Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Cells ; 12(24)2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-38132165

RESUMO

BACKGROUND: In patients with diarrhea-predominant irritable bowel syndrome (IBS-D), the diarrheal mechanisms are largely unknown, and they were examined in this study on colon biopsies. METHODS: Electrophysiological measurements were used for monitoring functional changes in the diarrheic colon specimens. In parallel, tight junction protein expression was analyzed by Western blot and confocal laser-scanning microscopy, and signaling pathway analysis was performed using RNA sequencing and bioinformatics. RESULTS: Epithelial resistance was decreased, indicating an epithelial leak flux diarrheal mechanism with a molecular correlate of decreased claudin-1 expression, while induction of active anion secretion and impairment of active sodium absorption via the epithelial sodium channel, ENaC, were not detected. The pathway analysis revealed activation of barrier-affecting cytokines TNF-α, IFN-γ, IL-1ß and IL-4. CONCLUSIONS: Barrier dysfunction as a result of epithelial tight junction changes plays a role in IBS-D as a pathomechanism inducing a leak flux type of diarrhea.


Assuntos
Síndrome do Intestino Irritável , Humanos , Síndrome do Intestino Irritável/metabolismo , Claudina-1/genética , Claudina-1/metabolismo , Regulação para Baixo , Mucosa Intestinal/patologia , Diarreia/metabolismo
2.
Int J Mol Sci ; 24(18)2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37762282

RESUMO

Lysine-specific demethylase 1 (LSD1) is highly expressed in many cancer types and strongly associated with cancer progression and metastasis. Circular RNAs (circRNAs) are produced by back-splicing and influence the interactive RNA network by microRNA and protein sponging. In the present study, we aimedto identify circRNAs that derive from the LSD1-encoding KDM1A gene, and to investigate their potential to be released and uptaken by lung cancer versus non-cancer epithelial cells. We identified four circLSD1-RNAs by RT-PCR with divergent primers, followed by sequencing. The expression level of circLSD1-RNAs was then studied by quantitative PCR on cellular and extracellular fractions of lung cancer (PC9) and non-cancer primary small airway epithelial (PSAE) cells. Moreover, we established the transgenic overexpression of circLSD1-RNAs. We show that circLSD1-RNAs are primarily located in the cytoplasm, but are packaged and released from lung cancer and non-cancer cells by extracellular vesicles (EVs) and ribonucleoprotein (RNP) complexes, respectively. Proteomics demonstrated a different protein pattern of EV fractions released from PC9 versus PSAE cells. Importantly, released circLSD1-RNAs were differently taken up by PSAE and PC9 cells. In conclusion, our findings provide primary evidence that circLSD1-RNAs participate in the intercellular communication of lung cancer cells with the tumor environment.

3.
Blood ; 142(1): 44-61, 2023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-37023372

RESUMO

In chronic lymphocytic leukemia (CLL), epigenetic alterations are considered to centrally shape the transcriptional signatures that drive disease evolution and underlie its biological and clinical subsets. Characterizations of epigenetic regulators, particularly histone-modifying enzymes, are very rudimentary in CLL. In efforts to establish effectors of the CLL-associated oncogene T-cell leukemia 1A (TCL1A), we identified here the lysine-specific histone demethylase KDM1A to interact with the TCL1A protein in B cells in conjunction with an increased catalytic activity of KDM1A. We demonstrate that KDM1A is upregulated in malignant B cells. Elevated KDM1A and associated gene expression signatures correlated with aggressive disease features and adverse clinical outcomes in a large prospective CLL trial cohort. Genetic Kdm1a knockdown in Eµ-TCL1A mice reduced leukemic burden and prolonged animal survival, accompanied by upregulated p53 and proapoptotic pathways. Genetic KDM1A depletion also affected milieu components (T, stromal, and monocytic cells), resulting in significant reductions in their capacity to support CLL-cell survival and proliferation. Integrated analyses of differential global transcriptomes (RNA sequencing) and H3K4me3 marks (chromatin immunoprecipitation sequencing) in Eµ-TCL1A vs iKdm1aKD;Eµ-TCL1A mice (confirmed in human CLL) implicate KDM1A as an oncogenic transcriptional repressor in CLL which alters histone methylation patterns with pronounced effects on defined cell death and motility pathways. Finally, pharmacologic KDM1A inhibition altered H3K4/9 target methylation and revealed marked anti-B-cell leukemic synergisms. Overall, we established the pathogenic role and effector networks of KDM1A in CLL via tumor-cell intrinsic mechanisms and its impacts in cells of the microenvironment. Our data also provide rationales to further investigate therapeutic KDM1A targeting in CLL.


Assuntos
Leucemia Linfocítica Crônica de Células B , Humanos , Camundongos , Animais , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Histonas/metabolismo , Lisina , Estudos Prospectivos , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Microambiente Tumoral
4.
Cells ; 12(2)2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36672170

RESUMO

BACKGROUND: The underlying pathophysiology of irritable bowel syndrome (IBS) is still unclear. Our aim was to investigate the pathophysiological mechanisms of diarrhea, constipation, and antigen uptake in mixed-type IBS (IBS-M). METHODS: Colonoscopic biopsies were obtained from IBS-M patients. Epithelial transport and barrier function of colonic mucosae were characterized in Ussing chambers using impedance spectroscopy. Mucosal permeability to macromolecules was measured. Western blotting for tight junction (TJ) proteins was performed and their subcellular localization was visualized by confocal microscopy. RNA-sequencing was performed for gene expression and signaling pathway analysis. RESULTS: In IBS-M, epithelial resistance and ENaC-dependent sodium absorption were unchanged, while short-circuit current reflecting chloride secretion was reduced. Concomitantly, epithelial permeability for fluorescein and FITC-dextran-4000 increased. TJ protein expression of occludin decreased, whereas claudins were unaltered. Confocal microscopy revealed the de-localization of tricellulin from tricellular TJs. Involved pathways were detected as proinflammatory cytokine pathways, LPS, PGE2, NGF, and vitamin D. CONCLUSIONS: Decreased anion secretion explains constipation in IBS-M, while ion permeability and sodium absorption were unaltered. Reduced occludin expression resulted in the delocalization of tricellulin from the tricellular TJ, leading to increased macromolecular permeability that contributes to antigen influx into the mucosa and perpetuates a low-grade inflammatory process.


Assuntos
Síndrome do Intestino Irritável , Humanos , Síndrome do Intestino Irritável/metabolismo , Junções Íntimas/metabolismo , Ocludina/metabolismo , Proteína 2 com Domínio MARVEL/metabolismo , Constipação Intestinal/metabolismo , Proteínas de Junções Íntimas/metabolismo , Permeabilidade , Hábitos
5.
Cancer Immunol Res ; 10(9): 1055-1068, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35759797

RESUMO

Chimeric antigen receptor (CAR) T-cell therapy has led to tremendous successes in the treatment of B-cell malignancies. However, a large fraction of treated patients relapse, often with disease expressing reduced levels of the target antigen. Here, we report that exposing CD19+ B-cell acute lymphoblastic leukemia (B-ALL) cells to CD19 CAR T cells reduced CD19 expression within hours. Initially, CD19 CAR T cells caused clustering of CD19 at the T cell-leukemia cell interface followed by CD19 internalization and decreased CD19 surface expression on the B-ALL cells. CD19 expression was then repressed by transcriptional rewiring. Using single-cell RNA sequencing and single-cell assay for transposase-accessible chromatin using sequencing, we demonstrated that a subset of refractory CD19low cells sustained decreased CD19 expression through transcriptional programs of physiologic B-cell activation and germinal center reaction. Inhibiting B-cell activation programs with the Bruton's tyrosine kinase inhibitor ibrutinib increased the cytotoxicity of CD19 CAR T cells without affecting CAR T-cell viability. These results demonstrate transcriptional plasticity as an underlying mechanism of escape from CAR T cells and highlight the importance of combining CAR T-cell therapy with targeted therapies that aim to overcome this plasticity. See related Spotlight by Zhao and Melenhorst, p. 1040.


Assuntos
Linfoma de Células B , Leucemia-Linfoma Linfoblástico de Células Precursoras , Antígenos CD19/imunologia , Centro Germinativo/imunologia , Humanos , Imunoterapia Adotiva/métodos , Linfoma de Células B/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T/imunologia
6.
Biomark Insights ; 17: 11772719211067972, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35095271

RESUMO

BACKGROUND: Methylation at 5 CpG sites was previously shown to classify chronic lymphocytic leukemia (CLL) into 3 prognostic subgroups. Here, we aimed to validate the marker set in an additional cohort and to evaluate its clinical utility for CLL patient stratification. METHODS: We evaluated this epigenetic marker set in 79 German patients using bisulfite treatment followed by pyrosequencing and classification using a support vector machine-learning tool. RESULTS: The n-CLL, i-CLL, and m-CLL classification was detected in 28 (35%), 10 (13%), and 41 (51%) patients, respectively. Epigenetic grouping was associated with IGHV mutational status (P = 2 × 10-12), isolated del13q (P = 9 × 10-6), del17p (P = .015), complex karyotype (P = .005), VH-usage, and clinical outcome as time to first treatment (P = 1.4 × 10-12) and overall survival (P = .003). Multivariate Cox regression analysis identified n-CLL as a factor for earlier treatment hazard ratio (HR), 6.3 (95% confidence interval [CI] 2.4-16.4; P = .0002) compared to IGHV mutational status (HR 4.6, 95% CI 1.9-11.3, P = .0008). In addition, when comparing the prognostic value of the epigenetic classification system with the IGHV classification, epigenetic grouping performed better compared to IGHV mutational status using Kaplan-Meier estimation and allowed the identification of a third, intermediate (i-CLL) group. Thus, our study confirmed the prognostic value of the epigenetic marker set for patient stratification in routine clinical diagnostics.

7.
J Am Soc Nephrol ; 33(4): 699-717, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35031570

RESUMO

BACKGROUND: The tight junction proteins claudin-2 and claudin-10a form paracellular cation and anion channels, respectively, and are expressed in the proximal tubule. However, the physiologic role of claudin-10a in the kidney has been unclear. METHODS: To investigate the physiologic role of claudin-10a, we generated claudin-10a-deficient mice, confirmed successful knockout by Southern blot, Western blot, and immunofluorescence staining, and analyzed urine and serum of knockout and wild-type animals. We also used electrophysiologic studies to investigate the functionality of isolated proximal tubules, and studied compensatory regulation by pharmacologic intervention, RNA sequencing analysis, Western blot, immunofluorescence staining, and respirometry. RESULTS: Mice deficient in claudin-10a were fertile and without overt phenotypes. On knockout, claudin-10a was replaced by claudin-2 in all proximal tubule segments. Electrophysiology showed conversion from paracellular anion preference to cation preference and a loss of paracellular Cl- over HCO3- preference. As a result, there was tubular retention of calcium and magnesium, higher urine pH, and mild hypermagnesemia. A comparison with other urine and serum parameters under control conditions and sequential pharmacologic transport inhibition, and unchanged fractional lithium excretion, suggested compensative measures in proximal and distal tubular segments. Changes in proximal tubular oxygen handling and differential expression of genes regulating fatty acid metabolism indicated proximal tubular adaptation. Western blot and immunofluorescence revealed alterations in distal tubular transport. CONCLUSIONS: Claudin-10a is the major paracellular anion channel in the proximal tubule and its deletion causes calcium and magnesium hyper-reabsorption by claudin-2 redistribution. Transcellular transport in proximal and distal segments and proximal tubular metabolic adaptation compensate for loss of paracellular anion permeability.


Assuntos
Claudina-2 , Claudinas/metabolismo , Animais , Cátions/metabolismo , Túbulos Renais Proximais/metabolismo , Camundongos , Permeabilidade , Junções Íntimas/fisiologia
8.
PLoS One ; 16(11): e0259185, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34843512

RESUMO

The spectrum of somatic genetic variation in colorectal adenomas caused by biallelic pathogenic germline variants in the MSH3 gene, was comprehensively analysed to characterise mutational signatures and identify potential driver genes and pathways of MSH3-related tumourigenesis. Three patients from two families with MSH3-associated polyposis were included. Whole exome sequencing of nine adenomas and matched normal tissue was performed. The amount of somatic variants in the MSH3-deficient adenomas and the pattern of single nucleotide variants (SNVs) was similar to sporadic adenomas, whereas the fraction of small insertions/deletions (indels) (21-42% of all small variants) was significantly higher. Interestingly, pathogenic somatic APC variants were found in all but one adenoma. The vast majority (12/13) of these were di-, tetra-, or penta-base pair (bp) deletions. The fraction of APC indels was significantly higher than that reported in patients with familial adenomatous polyposis (FAP) (p < 0.01) or in sporadic adenomas (p < 0.0001). In MSH3-deficient adenomas, the occurrence of APC indels in a repetitive sequence context was significantly higher than in FAP patients (p < 0.01). In addition, the MSH3-deficient adenomas harboured one to five (recurrent) somatic variants in 13 established or candidate driver genes for early colorectal carcinogenesis, including ACVR2A and ARID genes. Our data suggest that MSH3-related colorectal carcinogenesis seems to follow the classical APC-driven pathway. In line with the specific function of MSH3 in the mismatch repair (MMR) system, we identified a characteristic APC mutational pattern in MSH3-deficient adenomas, and confirmed further driver genes for colorectal tumourigenesis.


Assuntos
Polipose Adenomatosa do Colo/patologia , Neoplasias Colorretais/patologia , Proteína 3 Homóloga a MutS/genética , Receptores de Activinas Tipo II/genética , Polipose Adenomatosa do Colo/genética , Proteína da Polipose Adenomatosa do Colo/genética , Neoplasias Colorretais/genética , Humanos , Mutação INDEL , Polimorfismo de Nucleotídeo Único
9.
Int J Mol Sci ; 22(17)2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34502260

RESUMO

Mutations in splicing factor genes have a severe impact on the survival of cancer patients. Splicing factor 3b subunit 1 (SF3B1) is one of the most frequently mutated genes in chronic lymphocytic leukemia (CLL); patients carrying these mutations have a poor prognosis. Since the splicing machinery and the epigenome are closely interconnected, we investigated whether these alterations may affect the epigenomes of CLL patients. While an overall hypomethylation during CLL carcinogenesis has been observed, the interplay between the epigenetic stage of the originating B cells and SF3B1 mutations, and the subsequent effect of the mutations on methylation alterations in CLL, have not been investigated. We profiled the genome-wide DNA methylation patterns of 27 CLL patients with and without SF3B1 mutations and identified local decreases in methylation levels in SF3B1mut CLL patients at 67 genomic regions, mostly in proximity to telomeric regions. These differentially methylated regions (DMRs) were enriched in gene bodies of cancer-related signaling genes, e.g., NOTCH1, HTRA3, and BCL9L. In our study, SF3B1 mutations exclusively emerged in two out of three epigenetic stages of the originating B cells. However, not all the DMRs could be associated with the methylation programming of B cells during development, suggesting that mutations in SF3B1 cause additional epigenetic aberrations during carcinogenesis.


Assuntos
Biomarcadores Tumorais/genética , Metilação de DNA , Regulação Leucêmica da Expressão Gênica , Leucemia Linfocítica Crônica de Células B/patologia , Mutação , Fosfoproteínas/genética , Fatores de Processamento de RNA/genética , Epigênese Genética , Humanos , Leucemia Linfocítica Crônica de Células B/genética , Prognóstico
10.
Cells ; 10(7)2021 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-34359888

RESUMO

Organoids retain the morphological and molecular patterns of their tissue of origin, are self-organizing, relatively simple to handle and accessible to genetic engineering. Thus, they represent an optimal tool for studying the mechanisms of tissue maintenance and aging. Long-term expansion under standard growth conditions, however, is accompanied by changes in the growth pattern and kinetics. As a potential explanation of these alterations, epigenetic drifts in organoid culture have been suggested. Here, we studied histone tri-methylation at lysine 4 (H3K4me3) and 27 (H3K27me3) and transcriptome profiles of intestinal organoids derived from mismatch repair (MMR)-deficient and control mice and cultured for 3 and 20 weeks and compared them with data on their tissue of origin. We found that, besides the expected changes in short-term culture, the organoids showed profound changes in their epigenomes also during the long-term culture. The most prominent were epigenetic gene activation by H3K4me3 recruitment to previously unmodified genes and by H3K27me3 loss from originally bivalent genes. We showed that a long-term culture is linked to broad transcriptional changes that indicate an ongoing maturation and metabolic adaptation process. This process was disturbed in MMR-deficient mice, resulting in endoplasmic reticulum (ER) stress and Wnt activation. Our results can be explained in terms of a mathematical model assuming that epigenetic changes during a long-term culture involve DNA demethylation that ceases if the metabolic adaptation is disturbed.


Assuntos
Epigênese Genética , Técnicas de Cultura de Órgãos , Organoides/metabolismo , Adaptação Fisiológica/genética , Animais , Histonas/metabolismo , Camundongos , Fatores de Tempo , Transcrição Gênica
11.
Cell Death Dis ; 12(6): 530, 2021 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-34031359

RESUMO

Non-coding RNA from pericentromeric satellite repeats are involved in stress-dependent splicing processes, maintenance of heterochromatin, and are required to protect genome stability. Here we show that the long non-coding satellite III RNA (SatIII) generates resistance against the topoisomerase IIa (TOP2A) inhibitor etoposide in lung cancer. Because heat shock conditions (HS) protect cells against the toxicity of etoposide, and SatIII is significantly induced under HS, we hypothesized that the protective effect could be traced back to SatIII. Using genome methylation profiles of patient-derived xenograft mouse models we show that the epigenetic modification of the SatIII DNA locus and the resulting SatIII expression predict chemotherapy resistance. In response to stress, SatIII recruits TOP2A to nuclear stress bodies, which protects TOP2A from a complex formation with etoposide and results in decreased DNA damage after treatment. We show that BRD4 inhibitors reduce the expression of SatIII, restoring etoposide sensitivity.


Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , Etoposídeo/uso terapêutico , RNA Longo não Codificante/fisiologia , Animais , Antineoplásicos/farmacologia , Proteínas de Ciclo Celular/antagonistas & inibidores , Centrômero/genética , Centrômero/metabolismo , Metilação de DNA/fisiologia , DNA Topoisomerases Tipo II/efeitos dos fármacos , DNA Topoisomerases Tipo II/genética , DNA Topoisomerases Tipo II/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Células HeLa , Humanos , Masculino , Camundongos Endogâmicos NOD , Camundongos SCID , Proteínas de Ligação a Poli-ADP-Ribose/efeitos dos fármacos , Proteínas de Ligação a Poli-ADP-Ribose/genética , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , RNA Longo não Codificante/genética , Fatores de Transcrição/antagonistas & inibidores , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Angew Chem Int Ed Engl ; 60(24): 13507-13512, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-33826797

RESUMO

5-Methylcytosine (5mC), the central epigenetic mark of mammalian DNA, plays fundamental roles in chromatin regulation. 5mC is written onto genomes by DNA methyltransferases (DNMT), and perturbation of this process is an early event in carcinogenesis. However, studying 5mC functions is limited by the inability to control individual DNMTs with spatiotemporal resolution in vivo. We report light-control of DNMT catalysis by genetically encoding a photocaged cysteine as a catalytic residue. This enables translation of inactive DNMTs, their rapid activation by light-decaging, and subsequent monitoring of de novo DNA methylation. We provide insights into how cancer-related DNMT mutations alter de novo methylation in vivo, and demonstrate local and tuneable cytosine methylation by light-controlled DNMTs fused to a programmable transcription activator-like effector domain targeting pericentromeric satellite-3 DNA. We further study early events of transcriptome alterations upon DNMT-catalyzed cytosine methylation. Our study sets a basis to dissect the order and kinetics of diverse chromatin-associated events triggered by normal and aberrant DNA methylation.


Assuntos
DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA/efeitos da radiação , Luz , 5-Metilcitosina/metabolismo , Biocatálise , Linhagem Celular Tumoral , DNA (Citosina-5-)-Metiltransferases/química , DNA (Citosina-5-)-Metiltransferases/genética , Células HEK293 , Humanos , Mutação , Transcriptoma/efeitos da radiação
13.
Sci Rep ; 10(1): 15424, 2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32963289

RESUMO

Maternal exercise (ME) during pregnancy has been shown to improve metabolic health in offspring and confers protection against the development of non-alcoholic fatty liver disease (NAFLD). However, its underlying mechanism are still poorly understood, and it remains unclear whether protective effects on hepatic metabolism are already seen in the offspring early life. This study aimed at determining the effects of ME during pregnancy on offspring body composition and development of NAFLD while focusing on proteomic-based analysis of the hepatic energy metabolism during developmental organ programming in early life. Under an obesogenic high-fat diet (HFD), male offspring of exercised C57BL/6J-mouse dams were protected from body weight gain and NAFLD in adulthood (postnatal day (P) 112). This was associated with a significant activation of hepatic AMP-activated protein kinase (AMPK), peroxisome proliferator-activated receptor alpha (PPARα) and PPAR coactivator-1 alpha (PGC1α) signaling with reduced hepatic lipogenesis and increased hepatic ß-oxidation at organ programming peak in early life (P21). Concomitant proteomic analysis revealed a characteristic hepatic expression pattern in offspring as a result of ME with the most prominent impact on Cholesterol 7 alpha-hydroxylase (CYP7A1). Thus, ME may offer protection against offspring HFD-induced NAFLD by shaping hepatic proteomics signature and metabolism in early life. The results highlight the potential of exercise during pregnancy for preventing the early origins of NAFLD.


Assuntos
Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Condicionamento Físico Animal/fisiologia , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Efeitos Tardios da Exposição Pré-Natal/prevenção & controle , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Peso Corporal/fisiologia , Dieta Hiperlipídica/efeitos adversos , Feminino , Fígado/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/fisiopatologia , Obesidade/metabolismo , Obesidade/fisiopatologia , PPAR alfa/metabolismo , Gravidez , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Transdução de Sinais/fisiologia , Aumento de Peso/fisiologia
14.
Angew Chem Int Ed Engl ; 59(23): 8927-8931, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32167219

RESUMO

We report programmable receptors for the imaging-based analysis of 5-methylcytosine (5mC) in user-defined DNA sequences of single cells. Using fluorescent transcription-activator-like effectors (TALEs) that can recognize sequences of canonical and epigenetic nucleobases through selective repeats, we imaged cellular SATIII DNA, the origin of nuclear stress bodies (nSB). We achieve high nucleobase selectivity of natural repeats in imaging and demonstrate universal nucleobase binding by an engineered repeat. We use TALE pairs differing in only one such repeat in co-stains to detect 5mC in SATIII sequences with nucleotide resolution independently of differences in target accessibility. Further, we directly correlate the presence of heat shock factor 1 with 5mC at its recognition sequence, revealing a potential function of 5mC in its recruitment as initial step of nSB formation. This opens a new avenue for studying 5mC functions in chromatin regulation in situ with nucleotide, locus, and cell resolution.


Assuntos
5-Metilcitosina/metabolismo , Genômica , Imagem Molecular , Nucleotídeos/metabolismo , Células HeLa , Humanos , Análise de Célula Única
15.
Int J Mol Sci ; 21(6)2020 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-32178409

RESUMO

Aberrant DNA methylation in stem cells is a hallmark of aging and tumor development. Recently, we have suggested that promoter DNA hyper-methylation originates in DNA repair and that even successful DNA repair might confer this kind of epigenetic long-term change. Here, we ask for interrelations between promoter DNA methylation and histone modification changes observed in the intestine weeks after irradiation and/or following Msh2 loss. We focus on H3K4me3 recruitment to the promoter of H3K27me3 target genes. By RNA- and histone ChIP-sequencing, we demonstrate that this recruitment occurs without changes of the average gene transcription and does not involve H3K9me3. Applying a mathematical model of epigenetic regulation of transcription, we show that the recruitment can be explained by stronger DNA binding of H3K4me3 and H3K27me3 histone methyl-transferases as a consequence of lower DNA methylation. This scenario implicates stable transcription despite of H3K4me3 recruitment, in agreement with our RNA-seq data. Following several kinds of stress, including moderate irradiation, stress-sensitive intestinal stem cell (ISCs) are known to become replaced by more resistant populations. Our simulation results suggest that the stress-resistant ISCs are largely protected against promoter hyper-methylation of H3K27me3 target genes.


Assuntos
Metilação de DNA/genética , DNA/genética , Histonas/genética , Intestinos/fisiologia , Regiões Promotoras Genéticas/genética , Células-Tronco/fisiologia , Animais , Epigênese Genética/genética , Código das Histonas/genética , Camundongos
16.
Oncogene ; 39(19): 3837-3852, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32161312

RESUMO

Remodeling transcription by targeting bromodomain and extraterminal (BET) proteins has emerged as promising anticancer strategy. Here, we identify a novel synergistic interaction of the BET inhibitor JQ1 with the PI3Kα-specific inhibitor BYL719 to trigger mitochondrial apoptosis and to suppress tumor growth in models of rhabdomyosarcoma (RMS). RNA-Seq revealed that JQ1/BYL719 co-treatment shifts the overall balance of BCL-2 family gene expression towards apoptosis and upregulates expression of BMF, BCL2L11 (BIM), and PMAIP1 (NOXA) while downregulating BCL2L1 (BCL-xL). These changes were confirmed by qRT-PCR and western blot analysis. Ingenuity pathway analysis (IPA) of RNA-Seq data followed by validation qRT-PCR and western blot identified MYC and FOXO3a as potential transcription factors (TFs) upstream of the observed gene expression pattern. Immunoprecipitation (IP) studies showed that JQ1/BYL719-stimulated increase in BIM expression enhances the neutralization of antiapoptotic BCL-2, BCL-xL, and MCL-1. This promotes the activation of BAK and BAX and caspase-dependent apoptosis, as (1) individual silencing of BMF, BIM, NOXA, BAK, or BAX, (2) overexpression of BCL-2 or MCL-1 or (3) the caspase inhibitor N-Benzyloxycarbonyl-Val-Ala-Asp(O-Me) fluoromethylketone (zVAD.fmk) all rescue JQ1/BYL719-induced cell death. In conclusion, co-inhibition of BET proteins and PI3Kα cooperatively induces mitochondrial apoptosis by proapoptotic re-balancing of BCL-2 family proteins. This discovery opens exciting perspectives for therapeutic exploitation of BET inhibitors in RMS.


Assuntos
Mitocôndrias/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/genética , Rabdomiossarcoma/tratamento farmacológico , Fatores de Transcrição/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Apoptose/efeitos dos fármacos , Azepinas/farmacologia , Proteína 11 Semelhante a Bcl-2/genética , Sinergismo Farmacológico , Regulação Neoplásica da Expressão Gênica/genética , Inibidores de Histona Desacetilases/farmacologia , Humanos , Camundongos , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , RNA-Seq , Rabdomiossarcoma/genética , Rabdomiossarcoma/patologia , Tiazóis/farmacologia , Fatores de Transcrição/antagonistas & inibidores , Triazóis/farmacologia , Proteína bcl-X/genética
17.
Int J Mol Sci ; 21(2)2020 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-31936044

RESUMO

The epithelial sodium channel (ENaC) can increase the colonic absorptive capacity for salt and water. Campylobacter concisus is a common pathogenic epsilonproteobacterium, causing enteritis and diarrhea. It can induce barrier dysfunction in the intestine, but its influence on intestinal transport function is still unknown. Therefore, our study aimed to characterize C. concisus effects on ENaC using the HT-29/B6-GR/MR (epithelial cell line HT-29/B6 transfected with glucocorticoid and mineralocorticoid receptors) cell model and mouse colon. In Ussing chambers, C. concisus infection inhibited ENaC-dependent Na+ transport as indicated by a reduction in amiloride-sensitive short circuit current (-55%, n = 15, p < 0.001). This occurred via down-regulation of ß- and γ-ENaC mRNA expression and ENaC ubiquitination due to extracellular signal-regulated kinase (ERK)1/2 activation, predicted by Ingenuity Pathway Analysis (IPA). In parallel, C. concisus reduced the expression of the sealing tight junction (TJ) protein claudin-8 and induced claudin-8 redistribution off the TJ domain of the enterocytes, which facilitates the back leakage of Na+ ions into the intestinal lumen. In conclusion, C. concisus caused ENaC dysfunction via interleukin-32-regulated ERK1/2, as well as claudin-8-dependent barrier dysfunction-both of which contribute to Na+ malabsorption and diarrhea.


Assuntos
Infecções por Campylobacter/metabolismo , Campylobacter/fisiologia , Claudinas/metabolismo , Canais Epiteliais de Sódio/metabolismo , Sódio/metabolismo , Animais , Infecções por Campylobacter/microbiologia , Colo/metabolismo , Colo/microbiologia , Diarreia/metabolismo , Diarreia/microbiologia , Células HT29 , Interações Hospedeiro-Patógeno , Humanos , Absorção Intestinal , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Camundongos , Camundongos Endogâmicos C57BL
18.
Chem Sci ; 11(46): 12506-12511, 2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34123231

RESUMO

Enrichment of chromatin segments from specific genomic loci of living cells is an important goal in chromatin biology, since it enables establishing local molecular compositions as the basis of locus function. A central enrichment strategy relies on the expression of DNA-binding domains that selectively interact with a local target sequence followed by fixation and isolation of the associated chromatin segment. The efficiency and selectivity of this approach critically depend on the employed enrichment tag and the strategy used for its introduction into the DNA-binding domain or close-by proteins. We here report chromatin enrichment by expressing programmable transcription-activator-like effectors (TALEs) bearing single strained alkynes or alkenes introduced via genetic code expansion. This enables in situ biotinylation at a defined TALE site via strain-promoted inverse electron demand Diels Alder cycloadditions for single-step, high affinity enrichment. By targeting human pericentromeric SATIII repeats, the origin of nuclear stress bodies, we demonstrate enrichment of SATIII DNA and SATIII-associated proteins, and identify factors enriched during heat stress.

19.
Genes (Basel) ; 10(5)2019 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-31109152

RESUMO

Natural Killer (NK-) cells reveal a keen reaction to acute bouts of exercise, including changes of epigenetic modifications. So far, exercise-induced alterations in NK-cell DNA-methylation were shown for single genes only. Studies analyzing genome-wide DNA-methylation have used conglomerates like peripheral blood mononuclear cells (PBMCs) rather than specific subsets of immune cells. Therefore, the aim of this pilot-study was to generate first insights into the influence of a single bout of exercise on genome-wide DNA-methylation in isolated NK-cells to open the field for such analyses. Five healthy women performed an incremental step test and blood samples were taken before and after exercise. DNA was isolated from magnet bead sorted NK-cells and further analyzed for global DNA-methylation using the Infinium MethylationEPIC BeadChip. DNA-methylation was changed at 33 targets after acute exercise. These targets were annotated to 25 genes. Of the targets, 19 showed decreased and 14 increased methylation. The 25 genes with altered DNA-methylation have different roles in cell regulation and differ in their molecular functions. These data give new insights in the exercise induced regulation of NK-cells. By using isolated NK-cells, exercise induced differences in DNA-methylation could be shown. Whether or not these changes lead to functional adaptions needs to be elucidated.


Assuntos
Metilação de DNA , Exercício Físico/fisiologia , Células Matadoras Naturais/metabolismo , Idoso , DNA/genética , Epigênese Genética , Teste de Esforço/métodos , Feminino , Estudo de Associação Genômica Ampla , Humanos , Células Matadoras Naturais/imunologia , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Pessoa de Meia-Idade , Projetos Piloto
20.
Clin Epigenetics ; 11(1): 65, 2019 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-31029155

RESUMO

BACKGROUND: Mismatch repair (MMR)-deficiency increases the risk of colorectal tumorigenesis. To determine whether the tumors develop on a normal or disturbed epigenetic background and how radiation affects this, we quantified genome-wide histone H3 methylation profiles in macroscopic normal intestinal tissue of young radiated and untreated MMR-deficient VCMsh2LoxP/LoxP (Msh2-/-) mice months before tumor onset. RESULTS: Histone H3 methylation increases in Msh2-/- compared to control Msh2+/+ mice. Activating H3K4me3 and H3K36me3 histone marks frequently accumulate at genes that are H3K27me3 or H3K4me3 modified in Msh2+/+ mice, respectively. The genes recruiting H3K36me3 enrich in gene sets associated with DNA repair, RNA processing, and ribosome biogenesis that become transcriptionally upregulated in the developing tumors. A similar epigenetic effect is present in Msh2+/+ mice 4 weeks after a single-radiation hit, whereas radiation of Msh2-/- mice left their histone methylation profiles almost unchanged. CONCLUSIONS: MMR deficiency results in genome-wide changes in histone H3 methylation profiles preceding tumor development. Similar changes constitute a persistent epigenetic signature of radiation-induced DNA damage.


Assuntos
Redes Reguladoras de Genes/efeitos da radiação , Histonas/metabolismo , Neoplasias Intestinais/etiologia , Intestinos/efeitos da radiação , Proteína 2 Homóloga a MutS/genética , Idoso , Animais , Estudos de Casos e Controles , Sequenciamento de Cromatina por Imunoprecipitação , Modelos Animais de Doenças , Epigênese Genética/efeitos da radiação , Feminino , Humanos , Neoplasias Intestinais/genética , Intestinos/química , Masculino , Camundongos , Sequenciamento Completo do Genoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...